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Chemical potential on the lattice

(2) Photon-field-like : 

1.Reconsider (1), especially for iμ. 
2.Utilize (1) for another purpose : control #flavors.
3.Study chiral phase diagram. 

[Hasenfratz-Karsch ’83]

(1) Continuum-like :

→ quadratic divergence of energy density : E ∼ µ2/a2

→ counter terms required              

→ Abelian gauge invariance kept

→ correct finite energy density :

ψ̄n(eµaψn+4 − e−µaψn−4)

E ∼ µ4

useless.... 

useful !

µψ̄nγ4ψn ∼ µψ†
nψn



1. Lattice fermions
・Doubling problem : Naive chiral&local fermion→16 species

where Tr stands for trace for color and spinor indices. In Monte Carlo simulations the
gauge field configuration is stochastically generated according to the weight in the parti-
tion function as D(U)e−SU . By summing up results for as many configurations as possible
and averaging them, we derive results for the finite lattice spacing. By taking a infinite
volume limit and a continuum limit, we derive results for the continuum theory. Since
the continuum limit is defined at the ultraviolet fixed point which corresponds to a g → 0
limit in QCD, we can obtain physical quantities by extrapolating results for different
bare couplings to zero bare coupling. This is a basic process in the lattice simulations
[2]. However this process itself does not cost much in numerical simulations. What cost
the most is calculation of the fermion propagator and its determinant. To perform the
full lattice simulations, we need to solve a large-size linear equation for a Dirac operator
matrix including the space-time coordinate, Dirac spinor, flavor and color indices for each
gauge configuration. In particular the numerical cost for the fermion propagator soars for
smaller mass and we cannot simulate QCD with practical quark mass. It is because the
number of conditions in the conjugate gradient process, which is usually used for solution
of a large linear equation, are determined by the minimum eigenvalue of the Dirac opera-
tor, which is related to fermion mass: However the most serious problem for lattice QCD
with fermions is not this: It is a notorious problem called a ”doubling problem” [3]. Let
us look into this by rewriting a free lattice fermion action in the momentum expression
with the lattice spacing being explicit as

SF =

∫ π/a

−π/a

d4pψ̄(ap)(
i

a
γµ sin apµ + m)ψ(ap), (2.14)

where we define the 4-vector momentum as pµ (µ = 1, 2, 3, 4). Discretization of spacetime
results in restriction of the euclidean momentum space as −π/a < pµ ≤ π/a, which
is called the Brillouin zone. The zero point of the Dirac operator or the pole of the
propagator in the momentum space D(p) = i

a sin apµ+m = 0 corresponds fermion degrees
of freedom. What is notable here is that this Dirac operator has 16 zeros within the
Brillouin zone for a massless case as

p̃µ = 0, or π/a, (2.15)

where p̃µ takes 0 or π/a thus the total number of zeros are sixteen. Let us look into it in
details for general dimensions. The naive lattice fermion propagator for d dimensions is
given by

D−1(pa) =
−iγµ sin apµ + am

sin2 apµ + a2m2
, (2.16)

with µ = 1, 2, 3, ..., d. The pole of the fermion propagator

sin2 apµ + a2m2 = 0, (2.17)

indicates existence of particles and their dispersion relations. In a classical continuum
limit a → 0, the sine function is expanded as

sin pµa ∼ p̂µa + O(a2), (2.18)
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for pµ = p̂µ and
sin pµa ∼ −p̂µa + O(a2), (2.19)

for pµ = p̂µ + π/a (p̂µ # 1/a). Thus the propagator in the continuum limit is given by

D−1(pa) → 1

a

∑

pµ=0,π/a

−i(−1)δµγµp̂µ + m

p̂2
µ + m2

, (2.20)

where δµ = 0 for pµ = 0 and δµ = 1 for pµ = π/a respectively. This expression clearly
uncovers that the naive fermion describes 2d Dirac fermion modes. This multiple emer-
gence of fermion degrees of freedom, which we call species or doublers, is a generic and
inevitable property of the lattice fermion action. It is summarized in the famous no-go
theorem, Nielsen-Ninomiya’s theorem [4]. This theorem states that the lattice fermion
action with chiral symmetry, locality and hermitcity should acquire fermions in multi-
ple number of two. As shown in [3] intuitively, although the sine function is consistent
with the the physical continuum dispersion for the zero at p̃ = (0, 0, 0, 0), its periodic-
ity results in another zero at a different momentum point such as p̃ = (π, 0, 0, 0). Thus
we have one pair of zeros per one dimension, leading to16 fermion modes in a 4 dimen-
sional theory with the hypercubic symmetry. Unfortunately the pairs have opposite chiral
charges (γ5 ↔ −γ5), thus left-chirality modes are always paired by right-chirality modes.
It means that we cannot formulate the chiral gauge theory such as the Weak- interaction
sector in the standard model, at least by using this naive discretization of the fermion
action. On the other hand, we can formulate a vector-type gauge theory, but there are 16
fermions contributing to the continuum limit. Thus we cannot describe quarks in QCD.
Since we need to break chiral symmetry explicitly to obtain doubler-less lattice fermions,
the doubling problem in lattice QCD can be called as a conflict of “chiral symmetry vs
doubler-less lattice fermion”.

As we have seen, the formulation of lattice fermions has difficulty to match phe-
nomenological theories. From the next section, we will look into a variety of lattice
fermion actions, some of which bypass the no-go theorem by breaking the presuppositions
of the no-go theorem appropriately.

2.2 Naive fermion

In this section we review the naive lattice fermion from the viewpoint of the symmetry
and the Dirac eigenvalues. Symmetries of the naive lattice fermion can be classified into
two types; discrete symmetries and continuous symmetries. Discrete symmetries include
the hypercubic symmetry, C, P and T invariance. The hypercubic symmetry results
in the Euclidean rotational symmetry in the continuum limit. These symmetries are
phenomenologically desiarble. On the other hand, continuous symmetries are affected
by the flavor structure of lattice species. The continuous symmetries include flavor and
chiral symmetry. Since the naive fermion contains 16 species, we expect that the theory
has U(16)×SU(16) symmetry in the continuum limit. However the lattice discretization
errors break it to U(4)×U(4) at finite lattice spacing, which is an anomaly-free subgroup
of the continuum U(16) × SU(16). In this section we first show that the kinetic term of
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γ5 → −γ5 (1)

a → 0 g2
σ → 0 g2 → ∞ N → ∞ (2)

2 − (cos ap1 + cos ap2) =
a2p2

1 + a2p2
2

2
+ O(a3) (3)

1 − cos ap1 cos ap2 =
a2p2

1 + a2p2
2

2
+ O(a3) (4)

ψ(1) :
1
24

(1 + cos p1)(1 + cos p2)

× (1 + cos p3)(1 + cos p4)ψ(p) (5)

p(1) = (0, 0, 0, 0) (6)

(0, 0) (π, 0) (0,π) (π, π) (7)

ψ(1) ψ(2) ψ(3) ψ(4) (8)

DW (p) = iγµpµ + O(a) (9)

DW (p) = iγµpµ +
2
a

+ O(a) (10)

Dov(p) = iγµpµ + O(a) (11)
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Nielsen-Ninomiya

Chiral symmetry   v.s.   desirable flavor number    

2 poles per dim. → 16 doublers in 4d

Free propagator
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Dnf

16 degenerate

Dirac spectrum

                    flavors       chiral      tuning     artifact
Wilson:             1              0         severe     O(a)
Staggered:         4              1           N/A       O(a^2) 
Domain-wall     1              1           easy       O(a^2)   
Overlap            1              1           N/A       O(a^2)

SN =
�

n

�a3

2
ψ̄nγµ(Un,µψn+µ − U†

n−µ,µψn−µ) + a4mψ̄nψn

�



◆Wilson fermion : species-splitting by mass

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :
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1 Introduction

DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

εx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ε(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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1 4 4616 1
Only one flavor is massless, 
while others have 1/a mass. 

m=0
m=2/a m=4/a m=6/a

m=8/a

Species-splitting without breaking chiral symmetry ?

SW =
a5

2
ψ̄n(2ψn − ψn+µ − ψn−µ) +

Flavored mass



: lifted by flavored-mass 

 : lifted by flavored-chemical potential

ψ̄n∆ψn

J
H
E
P
0
8
(
2
0
1
2
)
0
6
8
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Figure 1. Species-splitting in Wilson and Karsten-Wilczek fermion. Circled numbers stand for the
number of massless flavors on each point.

Here 14 species is decoupled in the naive continuum limit while two species at p = (0, 0, 0, 0)

and p = (0, 0, 0,π/a) has zero mass and zero imaginary chemical potential.1 More precisely,

among 16 species, two species have zero imaginary chemical potential, six have 2/a, six have

4/a and two have 6/a. In figure 1 we compares specie-splitting of KW fermion in chemical

potential space to that of Wilson fermion in mass space. It is notable that two-flavor

is the minimal number allowed by the no-go theorem. This form has been known as the

Karsten-Wilczek (KW) fermion [16, 17], which is the first known type of “minimal-doubling

fermions” [16–22]. It has one exact chiral symmetry, ultra-locality, cubic symmetry, CT

and P. Since the chemical potential term breaks discrete symmetries into the subgroup,

we need to fine-tune three parameters for one dimension-3 (ψ̄iγ4ψ) and two dimension-4

(ψ̄γ4∂4ψ, Fj4Fj4) counterterms in order to take a Lorentz-symmetric continuum limit for

the zero-(T ,µ) lattice QCD simulations [29–31].

Among the three counterterms, in this paper we mainly deal with the dimension-3

term µ3ψ̄iγ4ψ with a relevant parameter µ3 and the dimension-4 term d4ψ̄γ4∂4ψ with

a marginal parameter d4 since we study the strong-coupling lattice QCD and the Gross-

Neveu model, which contain no plaquette action. In particular the parameter µ3 is of special

importance: It changes the number of flavors and plays an important role in the chiral phase

structure. Furthermore the quantum effects produce O(1/a) additive chemical potential

renormalization in this case instead the additive mass renormalization, and we need to

cancel it by adjusting µ3 even for the application to the imaginary-chemical-potential lattice

QCD. This necessity of parameter tuning is also understood from the well-known fact

that the naive introduction of chemical potential into lattice fermions leads to divergence

of energy density and requires a counterterm due to the violation of the abelian gauge

invariance as shown in ref. [46].

We here write the KW fermion action of the interacting theory as

SKW =
∑

n

[
1

2

4∑

µ=1

ψ̄nγµ(Un,n+µψn+µ − Un,n−µψn−µ)

+
r

2

3∑

j=1

ψ̄niγ4(2ψn − Un,n+jψn+j − Un,n−jψn−j) + µ3ψ̄niγ4ψn +mψ̄nψn

+
d4
2
ψ̄xγ4(Un,n+4ψn+4 − Un,n−4ψn−4)

]
, (2.8)

1These two species are not equivalent since the gamma matrices are differently defined between them as

γ′

µ = Γ−1γµΓ. In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed by

this action is identified as a flavored one given by γ5 ⊗ τ3.

– 4 –

holding chiral symmetry!

�

µ

(1− cos pµ)

Chiral-symmetric way of lifting species degeneracy

(i) γ4

3�

j=1

(1− cos pj)

(i)ψ̄nγ4∆ψn

species feel different 
chemical potential

Imaginary one is preferred to avoid sign problem.



2. Minimal-doubling
• #species = 2

• One exact chiral symmetry

• Ultra-Locality

[Karsten ’81][Wilczek ’87]
[Creutz ’07][Borici ‘07]
[Creutz&Misumi ’10]

Wilson-like: not mass, but img chemical potential

cf.) Wilson

DW (p) = iγµ sin pµ + r
4�

µ=1

(1− cos pµ) + m

DKW(p) = iγµ sin pµ + irγ4

3�

j=1

(1− cos pj) + iµ3γ4
counterterm



Quarks

3



Quarks

3



Lattice fermions

4

#doublers chiral spinor
naive

Wilson

staggered

min double

16 exact 4

1 none 4

4 exact 1

2 exact 4



◆MD symmetries [Bedaque, Buchoff, Tiburzi, Walker-Loud, ’08]

 → Symmetries of finite-density systems

1. U(1) chiral
2. P
3. CT
4. Cubic

1. SU(2) chiral
2. P
3. CT
4. Spatial rotation

In a continuum limit

cf.) Naive fermion with μ

Minimal-doubling Finite density (2flavor)

Same symmetry

Same universality class in cont lim



3 counterterms for a Lorentz-sym cont. limit 
ψ̄nγ4Dψn Fi4Fi4dim3  dim4  

cf.) For (T=0, μ=0) lattice QCD

µ3ψ̄niγ4ψn

◆Additive chemical-pot renormalization

This ren. can also change # of flavors !

Flavored mass in Wilson → 1/a additive mass ren.

Flavored μ in MD → 1/a additive μ ren.

µ3ψ̄niγ4ψn

To control chem pot, we need to tune

[Capitani-Creutz-Weber-Wittig ’09]



◆Application to (T,μ) lattice QCD

E ≡ I(µ, r, µ3)− I(0, r, µ3) ∼ µ4

2-flavor finite-density chiral for Post Sign problem
cf.)  Rooting fails for μ≠0.  High cost for overlap.

Flavored img μ  +  photon-like μ 

correct energy density

Option2:  Flavored real μ  +  μ3 fine-tuning

To decouple 14 doublers

Option1:

physical chem-pot for 2 flavors

To decouple 14 doublers physical chem-pot for 2 flavors



 Wilson and Minimal-doubling
◆Wilson

◆MD

・Chiral symmetry breaking
・Flavored mass → finite-mass system

・Additive mass renormalization

・Spacetime symmetry breaking
・Flavored chemical potential → finite-density

・Additive chemical potential renorm.

・Mass tuning

・μ3 tuning



3. Phase structure in µ3-g space
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Figure 2. The number of species in Karsten-Wilczek fermion as a function of the parameter µ3. On
the boundaries between different sectors, the dispersion relation of fermions becomes unphysical.

that boundaries between χSSB and non-χSSB phases starts from µ3 = −7 and µ3 = 1

in the weak-coupling limit. From next section, we will elucidate the µ3–g2 chiral phase

diagram by using strong-coupling lattice QCD and the Gross-Neveu model.

3 Strong-coupling lattice QCD

In this section we employ the strong coupling analysis to investigate the chiral phase

structure in lattice QCD with Karsten-Wilczek (KW) fermion. The first step is to derive

an effective potential of meson fields corresponding to the fermion action in eq. (2.8).

The strong-coupling study for KW fermion was first performed by the present author and

collaborators in [47]. We here take the same approach.

Lattice fermion action is generally written as following by using hopping operators P±
µ

and an onsite operator M̂

S =
∑

n,µ

ψ̄n(P
+
µ ψn+µ − P−

µ ψn−µ) +
∑

n

ψ̄nM̂ψn . (3.1)

By using these operators an effective action for mesons in the strong coupling limit can be

written [11] as

Seff(M) = Nc

∑

n

[∑

µ

Tr f(Λn,µ) + tr M̂M(n)− tr logM(n)

]
, (3.2)

Λn,µ =
Vn,µV̄n,µ

N2
c

, M(n)αβ =

∑
a ψ̄

a,α
n ψa,β

n

Nc
,

V ab
n,µ = ψ̄b

nP
−
µ ψa

n+µ̂ , V̄ ab
n,µ = −ψ̄b

n+µ̂P
+
µ ψa

n , (3.3)

Tr f(Λn,µ) = −tr f
(
−M(n)(P+

µ )TM(n+ µ̂)(P−
µ )T

)
, (3.4)

where Nc is the number of colors, Tr (tr ) means a trace over color (spinor) index, and

M(n) is a meson field. a, b are indices for colors while α,β for spinors. The explicit form

of the function f is determined by performing a one-link integral of the gauge field. In the

large Nc limit, it is known that f(x) can be analytically evaluated [13] as

f(x) =
√
1 + 4x− 1− ln

1 +
√
1 + 4x

2
= x+O(x2) . (3.5)

For most cases of studying phase structure, we can approximate it as f(x) ∼ x, which

corresponds to a large-dimension limit [48]. Since the phase transition is expected to be

– 6 –

??

Additive renorm. can change 2-flavor range.

◆Why we need to study

It is essential both for zero & finite-(T,μ).

Phase diagram can give guiding principle for μ3 tuning.

cf.) Aoki phase in Wilson

Chiral limit is taken along 
with the phase boundary.



i) Strong-coupling limit
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second-order for a massless case, this approximation at least works well near the phase

boundary. We however note that it becomes less valid for large σ. In the case of the

Karsten-Wilczek fermion, we have M̂ = m14 + i(µ3 + 3r)γT4 and

P+
µ =

{
1
2(γµ + irγ4) µ = 1, 2, 3
1
2γ4(1 + d4) µ = 4

, P−
µ =

{
1
2(γµ − irγ4) µ = 1, 2, 3
1
2γ4(1 + d4) µ = 4

. (3.6)

We here assume a form of meson condensate with chiral and 4th vector condensates as

M0 = σ14 + iπ4γ4 . (3.7)

It is because the flavored chemical potential term is expected to produce 4th vector con-

densate, which is related to quark density. (We will discuss possibility of other condensates

in the end of this section.) The explicit form of the effective action for σ and π4 is given by

Seff = −4NcVol.Veff(σ,π4) , (3.8)

Veff(σ,π4) =
1

2
log(σ2 + π2

4)−mσ + (µ3 + 3r)π4

−
1

4

[
3(1 + r2) + (1 + d4)

2
]
σ2 −

1

4

[
3(1− r2)− (1 + d4)

2
]
π2
4 . (3.9)

We now find saddle points of Seff(M) from

δSeff

δσ
=

δSeff

δπ4
= 0 . (3.10)

Then gap equations are given by

3(1 + r2) + (1 + d4)2

2
σ +m−

σ

σ2 + π2
4

= 0 , (3.11)

3(1− r2)− (1 + d4)2

2
π4 − (µ3 + 3r)−

π4
σ2 + π2

4

= 0 . (3.12)

It is notable that these gap equations have a particle-hole symmetry as (π4, µ3 + 3) ↔
(−π4,−µ3 − 3), which is reflected by chiral phase structure as we will see later. We first

consider m = 0, and solve the equations analytically. One of the main purposes here is

to find a boundary between chiral symmetric and broken phases. For this purpose we

take σ = 0 after dividing the first equation by σ since σ is an order parameter of chiral

symmetry breaking. Then we have

3(1 + r2) + (1 + d4)2

2
=

1

π2
4

, (3.13)

3(1− r2)− (1 + d4)2

2
π4 − (µ3 + 3r) =

1

π4
. (3.14)

These equations give chiral boundaries for µ3 as

µ3 = ±
6r2 + 2(1 + d4)2√
6r2 + 2(1 + d4)2 + 6

− 3r . (3.15)
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Figure 3. Chiral condensate in strong-coupling lattice QCD with KW fermion form = 0 and r = 1.
We define µ̄3 ≡ µ3 + 3 and depict the chiral condensate as a function of µ̄3 for 0 < µ̄3 < 4. This
result indicates the second-order chiral transition although the approximation f(x) ∼ x becomes
less reliable for larger σ.
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Figure 4. Chiral phase structure in the strong-coupling limit of lattice QCD with KW fermion for
r = 1, d4 = 0 and m = 0.

where S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor

respectively. Here M0 is the vacuum expectation value of M(n). We note that

ΓS =
14

2
, ΓP =

γ5
2

, ΓVα =
γα
2

, ΓAα =
iγ5γα
2

, ΓTαβ
=

γαγβ
2i

(α < β) .

(3.23)

Then the effective action at the second order of πX is given by

S(2)
eff = Nc

∑

n

[
1

2
tr (M−1

0 ΓXM−1
0 ΓY )π

X(n)πY (n) +
∑

µ

tr (ΓXP−
µ ΓY P

+
µ )πX(n)πY (n+µ̂)

]

= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)π

Y (p) , (3.24)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (3.25)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) +

∑

µ

tr (ΓXP−
µ ΓY P

+
µ )eipµ . (3.26)

In our case M0 = σ1+ iπ4γ4 gives

M−1
0 =

1

σ2 + π2
4

(σ1− iπ4γ4) . (3.27)
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We now write the whole inverse meson propagator matrix in the S-V -T -A-P sector as

DSV TAP =




DS −C −irs1
2

−irs2
2

−irs3
2

−C DV4

irs1
2

DT14

irs2
2

DT24

irs3
2

DT34

DV3

−irs2
2

irs1
2

DV2

irs3
2

−irs1
2

DV1

−irs3
2

irs2
2

DT12
C −irs3

2

DT13
−C irs2

2

DT23
C −irs1

2
irs2
2

−irs3
2

C DA1

−irs1
2

irs3
2

−C DA2

irs1
2

−irs2
2

C DA3

irs3
2

−irs2
2

irs1
2

DP

DA4





,

(3.28)

where components are given by

DS =
σ2 − π2

4

2(σ2 + π2
4)

2
+

1

4

[
(1 + r2)(c1 + c2 + c3) + (1 + d4)

2c4
]
, (3.29)

DV4
=

σ2 − π2
4

2(σ2 + π2
4)

2
−

1

4

[
(1− r2)(c1 + c2 + c3)− (1 + d4)

2c4
]
, (3.30)

DV3
=

1

2(σ2 + π2
4)

−
1

4

[
(1 + r2)(c1 + c2) + (r2 − 1)c3 + (1 + d4)

2c4
]
, (3.31)

DV2
=

1

2(σ2 + π2
4)

−
1

4

[
(1 + r2)(c1 + c3) + (r2 − 1)c2 + (1 + d4)

2c4
]
, (3.32)

DV1
=

1

2(σ2 + π2
4)

−
1

4

[
(1 + r2)(c2 + c3) + (r2 − 1)c1 + (1 + d4)

2c4
]
, (3.33)
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Figure 3. Chiral condensate in strong-coupling lattice QCD with KW fermion form = 0 and r = 1.
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result indicates the second-order chiral transition although the approximation f(x) ∼ x becomes
less reliable for larger σ.
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Figure 4. Chiral phase structure in the strong-coupling limit of lattice QCD with KW fermion for
r = 1, d4 = 0 and m = 0.

where S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor

respectively. Here M0 is the vacuum expectation value of M(n). We note that

ΓS =
14

2
, ΓP =

γ5
2

, ΓVα =
γα
2

, ΓAα =
iγ5γα
2

, ΓTαβ
=

γαγβ
2i

(α < β) .

(3.23)

Then the effective action at the second order of πX is given by

S(2)
eff = Nc

∑

n

[
1

2
tr (M−1

0 ΓXM−1
0 ΓY )π

X(n)πY (n) +
∑

µ

tr (ΓXP−
µ ΓY P

+
µ )πX(n)πY (n+µ̂)

]

= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)π

Y (p) , (3.24)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (3.25)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) +

∑

µ

tr (ΓXP−
µ ΓY P

+
µ )eipµ . (3.26)

In our case M0 = σ1+ iπ4γ4 gives

M−1
0 =

1

σ2 + π2
4

(σ1− iπ4γ4) . (3.27)
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This is reasonable since the weak-coupling limit should have zero chiral condensate. As

we expected, the chiral critical line is connected to boundaries between two-flavor and no-

flavor phases in the weak-coupling limit (µ = −3, 1). It is consistent with our intuition

that the fermion-less theory cannot cause spontaneous breaking of chiral symmetry. We

can check the mass of the scalar meson mass becomes zero on the critical line µc(g2). The

mass of σ is calculated analytically on the boundary, and is shown to be zero as

m2
σ ∝ 〈

δ2Seff

δσ(n)δσ(m)
〉µc = V

δ2S̃eff

δ2σ2

∣∣∣
µc

= V

[
1

g2
− 2

∫
d2k

(2π)2
1

σ2 + (π2 + sin k2 − cos k1)2 + (sin k1)2

− 4σ2
∫

d2k

(2π)2
1

σ2 + (π2 + sin k2 − cos k1)2 + (sin k1)2

]

µc

= 0 . (4.18)

A massless scalar meson indicates that the phase boundary we derived is a second-order

critical line. This result is consistent with the strong-coupling lattice QCD in the previous

section.

Next, we discuss more general cases with d %= 0 and g2σ %= g22. Nonzero values of d

change sin k2 → (1 + d) sin k2 in (4.16)–(4.17) and give just qualitative changes of the

phase diagram: Since the minimal-doubling ranges are given by −1 < µ < 1 + d and

−3− d < µ < −1 for nonzero d, it gives a larger physical range in the phase diagram. As

an example, we depict the µ–g2 phase diagram for d = 0.5 in figure 7. In the case with

two independent coupling constants g2σ %= g22, the equations for the phase boundary are
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In this section we have assumed the form of condensation σ + iγ4π4. As shown in the

appendix A, we can also consider possibility of other condensations as σ+ iγ4π4+ iγ5π5 or

σ+iγ4π4+iγ4γ5π45. The results show that the solution with nonzero π5 or π45 condensates

cannot be a vacuum, and our solutions in this section are likely to be true vacua. We thus

consider that the parity breaking phase will not appear in the KW fermion unless we

introduce the flavored-mass terms shown in [41]. At the weak coupling there may be a

more subtle competition between the discretization error and the counterterm. We thus

need further study to conclude whether the parity breaking exist or not when we take into

account all the three counterterms in the weak coupling.

In the end of this section, we discuss the other type of minimal-doubling fermions,

called the Creutz-Borici type [18–20]. We can analyze it in a parallel way. We note that

this type specifies the diagonal direction characterized by 2Γ = γ1 + γ2 + γ3 + γ4, instead

of the time direction. Appendix B is devoted to detailed analysis for this case. The result

is qualitatively the same. We find two chiral boundaries and chiral condensate is nonzero

between the boundaries.

4 Gross-Neveu model

We investigate the whole phase diagram for Karsten-Wilczek (KW) fermion by using the

two-dimensional lattice Gross-Neveu model [49–58], which has common features with 4d

lattice QCD. In two dimensions, massless KW fermion action is given by

aDKW(p) = i
2∑

ν=1

γν sin apν + iγ2
[
r(1− cos ap1) + µ+ d sin ap2

]
. (4.1)

In this section we concentrate on the case with r = 1. In this section we denote the relevant

parameter µ3 as just µ ≡ µ3 and denote the maginal parameter d4 as d ≡ d4. To look into

the number of flavors in a free theory, we for a while consider d = 0. For −3 < µ < −1

and −1 < µ < 1, there are only two zeros, and it becomes minimal-doubling. For µ < −3

and µ > 1, there is no zero, and it becomes a fermion-less theory. For µ = −3, 1, there

is one zero, but the dispersion relation becomes unphysical ∼ p1 + p22. For µ = −1, there

two zeros but whose dispersion relation is again unphysical. The main difference from

four-dimensional cases is that there is no 6-flavor range.

The lattice Gross-Neveu model with KW fermion is given by

S =
1

2

∑

n,ν

ψ̄nγν(ψn+ν − ψn−ν) +
1

2

∑

n

ψ̄niγ2(2ψn − ψn+1̂ − ψn−1̂)

−
1

2N

∑

n

[
g2σ(ψ̄nψn)

2 + g22(ψ̄niγ2ψn)
2
]

+ µ
∑

n

ψ̄niγ2ψn + d
∑

n

ψ̄niγ2(ψn+2̂ − ψn−2̂) +m
∑

n

ψ̄nψn , (4.2)

where ν stands for ν = 1, 2, n = (n1, n2) are the two dimensional coordinates and ψn

stands for a N -component Dirac fermion field (ψn)j (j = 1, 2, . . . , N). The bilinear ψ̄ψ
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Figure 9. Conjecture on µ3–g2 chiral phase structure for Karsten-Wilczek fermion with r = 1.
The width of the minimal-doubling range determines how hard it is to tune µ3.

In the same way we can derive all other 16 components of the matrix, all of which take

nonzero values in general. What we are interested in is terms of the components up to

O(p2) as far as we consider the rotation symmetry up to O(a) discretization errors. The

coefficients can be extracted through numerical integrals of the equations as (4.33). We

note that we also need to substitute into the integral the values of VEV of σ and π2 derived

from the gap equations. Then we diagonalize the 4 × 4 meson matrix DXY to derive the

proper meson propagator. By introducing p = (p, iE) into the propagators, we find the

dispersion relations. The question is which parameters among µ, d, g2σ, g
2
1, g

2
2, g

2
π need to

be tuned to recover Lorentz symmetry. It can give an important suggestion to lattice QCD

with the minimal-doubling fermions. We devote a future work to this analysis.

5 Conjecture on phase structure in QCD

From the study of strong-coupling lattice QCD and the Gross-Neveu model we speculate

on the whole chiral phase structure in lattice QCD with Karsten-Wilczek fermion. Figure 9

is a conjectured chiral phase structure with the number of flavors in the µ3–g2 space for

r = 1. There are roughly two phases with and without chiral condensate, or equivalently

with and without SSB of chiral symmetry. As was shown in the previous section, the

boundary between chiral symmetric and broken phases starts from the edge of the two-

flavor region of the free theory. We expect that the chiral boundaries are connected to the

two-flavor and no-flavor phases also in 4d QCD as shown in figure 9.

The question is a boundary between two-flavor and six-flavor ranges. In the weak-

coupling limit (g2 = 0) we analytically know the number of physical flavors: There are four

sectors with two, six, six and two flavors. There are only no flavors of fermions outside these

ranges. Toward the strong coupling, these ranges will change with g2 as shown in figure 9.

We have seen that we cannot distinguish two-flavor and six flavor ranges in the strong-

coupling limit, which means that the number of species becomes an ambiguous notion in

this limit. We thus expect that the boundary disappears at a certain gauge coupling, and

the two-flavor and six-flavor regions become undistinguishable as shown in figure 9.
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Conjecture on 4d lattice QCD with MD

μ3 should be set in MD range.



4. (T-μ) phase diagram



i) Strong-coupling limit

1. Link variable integral
2. Bosonization → meson potential
3. Determine the vacuum

→ Finite-(T,μ) case [Fukushima-Hatsuda-Nishida ‘04]

Effective potential

14

11

where we define

A2 = 1 +

(

µ3 +Dr −
D

2

√
1− r2π4

)2

, B = m+
D

2

√
1 + r2σ, (13)

E = arcsinh

(

B

A

)

= log





B

A
+

√

1 +

(

B

A

)2


 , (14)

with k̄(a)
n = kn + φa/Nτ − iµ, and k̃(a)

n is determined by the relation A sin k̃(a)
n = sin k̄(a)

n +

µ3 +Dr − D
2

√
1− r2π4. By integrating the temporal gauge field φa we derive

∫

DU4

∏

"x

A4NcNτ

Nc
∏

a=1

(2 coshNτE + 2 cos (φa − iNτµ))
4 =

∏

"x

[

∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

]

,

(15)

Qn =

∫ π

−π

dφ

2π
(2 coshNτE + 2 cos θ)4 e−inφ, θ = φ− iNτµ. (16)

For Nc = 3 these Qn are explicitly given as

Q0 = 2(8 cosh4NτE + 24 cosh2NτE + 3), Q±1 = 8 coshNτE(4 cosh2NτE + 3)e±Nτµ,

Q±2 = 4(6 cosh2NτE + 1)e±2Nτµ, Q±3 = 8 coshNτE e±3Nτµ,

Q±4 = e±4Nτµ, Q|n|≥5 = 0. (17)

As a result, the effective potential is given by

Feff(σ, π4;m,T, µ, µ3) =
NcD

4

(

(1 + r2)σ2 + (1− r2)π2
4

)

−Nc logA

−
T

4
log

(

∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

)

. (18)

Here we redefine the free energy 4Feff → Feff to be consistent with the phenomenological

result as discussed later. We here show only the calculation result of the determinant part

for Nc = 3,

∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

= 8

(

1 + 12 cosh2
E

T
+ 8 cosh4

E

T

)(

15− 60 cosh2
E

T
+ 160 cosh4 E

T
− 32 cosh6

E

T
+ 64 cosh8

E

T

)

+64 cosh
µB

T
cosh

E

T

(

−15 + 40 cosh2
E

T
+ 96 cosh4 E

T
+ 320 cosh8

E

T

)

+80 cosh
2µB

T

(

1 + 6 cosh2
E

T
+ 24 cosh4

E

T
+ 80 cosh6 E

T

)

+80 cosh
3µB

T
cosh

E

T

(

−1 + cosh2 E

T

)

+ 2 cosh
4µB

T
, (19)
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・Meson effective potential
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with

d4 = 0. Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are

1st and 2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior

instead of the 2nd order transition.

0.56/(5/3) ∼ 1 [11, 12], while R0
KW # 0.767/0.356 ∼ 2.2 (d4 = 0) and 0.742/0.343 ∼

2.2 (d4 = 0.1). In the real world, this ratio is larger, R0 >∼ MN/170 MeV ∼ 5.5. When

the finite coupling and Polyakov loop effects are taken into account for staggered fermion,

Tc(µB = 0) decreases, µc(T = 0) stays almost constant, then R0 value increases [14–16].

Larger R0 with KW fermion in the strong coupling limit may suggest smaller finite coupling

corrections in the phase boundary. Another interesting point is the location of the tricritical

point. In KW fermion, the ratio Rtri
KW = 0.804/0.234 # 3.4 (d4 = 0) and 0.774/0.226 #

3.4 (d4 = 0.1), while Rtri
st = 1.73/0.866 # 2.0 for unrooted staggered fermion [11, 12]. It

would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-

Carlo simulations [42], which implies that the critical point does not exist in the low baryon

chemical potential region, µB/T <∼ 3. These observations reveal usefulness of KW fermion

for research on QCD phase diagram.

1st

1st

2st

crossover

Chiral condensate & Baryon density
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Phase diagram

• Critical density/temp ratio
• KW fermion :
• Staggered :
• Phenomenology :

17

R0
KW =

µc(T = 0)
Tc(µB = 0)

∼ 2.3

R0
st ∼ 1

R0
ph � 5.5



Phase diagram

• Tricritical point ratio
• KW fermion :
• Staggered :
• Monte-Calro simulation : 

18

Rtri
KW =

µtri
B

T tri
� 3.4

Rtri
st � 2.0

Rtri
MC � 3



Summary

• Flavored chemical potential is another way 
of reducing species doublers.

• The symmetries of the formulation imply it 
suits finite temperature and density system.

• We find chiral phase structure in 
parameter spaces.

• (T,μ) chiral phase diagram is close to 
phenomenological conjectures.



Future works

• In this talk we concentrate on Imaginary 
flavored μ + O(1) real μ.

• We can also study Real flavored μ with 
fine-tuning of μ3.
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FIG. 7: Three-dimensional chiral phase diagram for T , µB and µ3 for m = 0 where µ3 runs within

half of the physical range −3 < µ3 <
√

32/7− 3. Green, red and purple lines show 2nd, 1st order

transitions and tricritical point, respectively. The critical chemical potential at T = 0 is explicitly

given by (24).

shows that the critical line changes with µ3 being varied. As far as we keep µ3 in the

physical range, the O(1/a) effective chemical potential for the physical flavors is cancelled.

As discussed above, however, we still have O(1) contribution as µ̃Im. We can interpret that

the dependence of the critical line on µ3 comes from the dependence of µ̃Im on µ3 as µ̃Im(µ3).

In this section we have obtained the finite-(T ,µ) QCD phase diagram in the strong-

coupling limit. To be precise, since the theory effectively contains the renormalized imagi-

nary chemical potential as the KW artifact, it should be called the finite-(T ,µRe,µIm) QCD

phase diagram. Anyhow, we have shown that we can apply the KW fermion to in-medium

lattice QCD. We lastly discuss the real-type FCP fermions [26]. As shown in Sec. II, we

can also consider the real-type KW fermion, which loses γ5 hermiticity. We can perform the

strong-coupling QCD analysis for this type in a parallel way, and can derive the QCD phase

diagram as long as the relevant parameter is set to the physical range. In the practical lattice

QCD simulations, however, we should encounter a severe sign problem with the real-type

FCP fermion even for zero-density cases. We need further study to judge its applicability

to lattice QCD.
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for Nc = 3
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Figure 1. Species-splitting in Wilson and Karsten-Wilczek fermion. Circled numbers stand for the
number of massless flavors on each point.

Here 14 species is decoupled in the naive continuum limit while two species at p = (0, 0, 0, 0)

and p = (0, 0, 0,π/a) has zero mass and zero imaginary chemical potential.1 More precisely,

among 16 species, two species have zero imaginary chemical potential, six have 2/a, six have

4/a and two have 6/a. In figure 1 we compares specie-splitting of KW fermion in chemical

potential space to that of Wilson fermion in mass space. It is notable that two-flavor

is the minimal number allowed by the no-go theorem. This form has been known as the

Karsten-Wilczek (KW) fermion [16, 17], which is the first known type of “minimal-doubling

fermions” [16–22]. It has one exact chiral symmetry, ultra-locality, cubic symmetry, CT

and P. Since the chemical potential term breaks discrete symmetries into the subgroup,

we need to fine-tune three parameters for one dimension-3 (ψ̄iγ4ψ) and two dimension-4

(ψ̄γ4∂4ψ, Fj4Fj4) counterterms in order to take a Lorentz-symmetric continuum limit for

the zero-(T ,µ) lattice QCD simulations [29–31].

Among the three counterterms, in this paper we mainly deal with the dimension-3

term µ3ψ̄iγ4ψ with a relevant parameter µ3 and the dimension-4 term d4ψ̄γ4∂4ψ with

a marginal parameter d4 since we study the strong-coupling lattice QCD and the Gross-

Neveu model, which contain no plaquette action. In particular the parameter µ3 is of special

importance: It changes the number of flavors and plays an important role in the chiral phase

structure. Furthermore the quantum effects produce O(1/a) additive chemical potential

renormalization in this case instead the additive mass renormalization, and we need to

cancel it by adjusting µ3 even for the application to the imaginary-chemical-potential lattice

QCD. This necessity of parameter tuning is also understood from the well-known fact

that the naive introduction of chemical potential into lattice fermions leads to divergence

of energy density and requires a counterterm due to the violation of the abelian gauge

invariance as shown in ref. [46].

We here write the KW fermion action of the interacting theory as

SKW =
∑

n

[
1

2

4∑

µ=1

ψ̄nγµ(Un,n+µψn+µ − Un,n−µψn−µ)

+
r

2

3∑

j=1

ψ̄niγ4(2ψn − Un,n+jψn+j − Un,n−jψn−j) + µ3ψ̄niγ4ψn +mψ̄nψn

+
d4
2
ψ̄xγ4(Un,n+4ψn+4 − Un,n−4ψn−4)

]
, (2.8)

1These two species are not equivalent since the gamma matrices are differently defined between them as

γ′

µ = Γ−1γµΓ. In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed by

this action is identified as a flavored one given by γ5 ⊗ τ3.
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From the viewpoints of practical application to two-flavor QCD, the relevant parameter

µ3 has to be tuned to cancel the O(1/a) imaginary chemical potential renormalization for

the two flavors. One necessary condition (but not a sufficient condition) for this purpose is

to set µ3 in the minimal-doubling range to realize the two-flavor QCD. As we conjectured

in figure 9, the minimal-doubling range in the middle gauge coupling should have some

width. One possible indicator of the minimal-doubling phase is the pion spectrum: If µ3

is in the no-flavor range, there is no SSB of chiral symmetry and no massless pion. If µ3

gets into the six-flavor region, the number of pseudo Nambu-Goldstone bosons increases.

However, setting µ3 in the minimal-doubling range is not sufficient for physical QCD to be

described: The Lorentz symmetric dispersion relation is broken down for general values of

µ3 in the minimal-coupling range as shown in eq. (2.11) and below for a free theory.

D(p) ∼ iγipi + iγ4p4

√
(1 + d4)2 − µ2

3 +O(ap2) . (5.1)

Since this free-theory argument indicates that the rotation symmetry can be restored by

tuning d4 as (1+d4)2−µ2
3 = 1, we may be able to restore Lorentz symmetry just by tuning

d4 with µ3 being set in the minimal-doubling range. Note that the minimal-doubling range

gets larger with nonzero d4 as shown in section 3 and 4, thus it seems that proper tuning

of d4 can be done for any value of µ3 without breaking down minimal-doubling. (We

need one more parameter tuning for the plaquette action in any case.) We also emphasize

that the same relative tuning of µ3 and d4 makes tree level couplings of the gauge field

to the fermions have a correct Lorentz-symmetric form. To show this, we look into the

quark-quark-gluon vertex at the tree level. For the case of µ3 = 0 and d4 = 0 it is given by

V (p, k) = −ig0

(
γµ cos

a(pµ + kµ)

2
+ γ4(1− δµ4) sin

a(pµ + kµ)

2

)
, (5.2)

as shown in [31]. For nonzero µ3 and d4, it is modified as

V (p, k) = −ig0

( 3∑

j=1

γj cos
a(pj+kj)

2
+ γ4

[
(1+d4) cos

a(p4+k4)

2
+

3∑

i=1

sin
a(pi+ki)

2

])
,

(5.3)

where we have no direct emergence of µ3 since it is a parameter for onsite (non-hopping)

terms. However, as we discussed, the zeros of the Dirac operator for nonzero µ3 and d4
is given by a function of µ3 and d4 as p̄ = k̄ =

(
0, 0, 0, 1a arcsin(−

µ3

1+d4
)
)
. Now we expand

both p and k about the zeros as p → p̄+ p and k → k̄ + k. In particular, the coefficient of

γ4 in (5.3) is expanded as

(1+d4)

[
cos

a(p̄4+k̄4)

2
cos

a(p4+k4)

2
− sin

a(p̄4+k̄4)

2
sin

a(p4+k4)

2

]
+

3∑

i=1

sin
a(pi+ki)

2

= (1+d4)

[√
1−

µ3

(1+d4)2
cos

a(p4+k4)

2
+

µ3

1+d4
sin

a(p4+k4)

2

]
+

3∑

i=1

sin
a(pi+ki)

2

= (1+d4)

√
1−

µ3

(1+d4)2
+O(ap, ak) . (5.4)
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Then, the vertex surviving in the naive continuum limit is given by

V (p, k) = −ig0
(
γ1 + γ2 + γ3 + γ4

√
(1 + d4)2 − µ2

3

)
+O(ap, ak) . (5.5)

Here we omit the ± sign in front of γ4 for the doubler pairs for simplicity. It is now

obvious that the tuning condition for the speed of light (1 + d4)2 − µ2
3 = 1 also fixes the

couplings of the gauge fields to the fermion fields in the tree level up to the discretization

errors. At least in the naive continuum limit, we can have a correct set of the Feynman

rules for fermion fields with the condition. However it is too early to conclude that this

condition is sufficient for Lorentz symmetry restoration since all the other Ward identities

may not be corrected by it in the interacting theory including the loop effects: to discuss

details, we consider the quark self-energy in lattice QCD with minimal-doubling fermions

following [31] as

Σ(p,m) = iγµpµΣ1(p) +mΣ2(p) + d1(g0) · iγ4p4 + d2(g0) · i
γ4
a

, (5.6)

where Σ1, Σ2, d1 and d2 can be calculated in the perturbative analysis. It is clear that

µ3 and d4 corresponds to counter parameters for d2 and d1 respectively, and the Dirac

operator (5.1) is renormalized as d4 → d4 + d1 and µ3 → µ3 + d2 in the interacting theory.

The last term with d2, or the O(1/a) renormalization, causes a shift of the poles of the

Dirac propagator away from their original positions as well as the change of the speed of

light as shown in (5.1). In the present work, we have also shown that this contribution

changes the size of the minimal-doubling range at the finite gauge coupling and provides

the non-trivial phase structure as shown in figure 9. The question is whether or not we

need to move the poles of the propagator back to the tree-level positions by tuning µ3

for a correct continuum limit. As far as the dispersion relation can be restored by d4, it

seems that the position of poles is not relevant to physics. However, in practical use of

the minimal-doubling fermion, d4 should be also tuned to make the conserved charge unity

as shown in [31]. It is not obvious whether this condition can also fix the speed of light

non-perturbatively. More generally speaking, it is very nontrivial whether all the Ward

identities are fixed only by one tuning condition in the interacting theory. If we cannot

restore Lorentz symmetry only with d4 tuning unlike the free theory, it means that we

still need to fine-tune the three parameters independently for a correct continuum limit of

lattice QCD simulations [29–31]. Further study is needed to figure out this point.

In the end of this section, we comment on another possibility for studying minimal-

doubling fermions. One interesting possibility is the chiral perturbation theory for minimal-

doubling fermions. Although we expect that it is quite tedious to construct the minimal-

doubling ChPT with the lower discrete symmetry than Wilson and staggered fermions,

the process could have some similarities with that of the in-medium ChPT [59]. If we

succeed to construct the minimal-doubling ChPT, it is intriguing to consider the Lorentz

symmetry restoration within the theory and discuss the parameter tuning for the symmetry

restoration. We can also investigate the vacuum and the phase structure in the theory. We

devote future works to the study on the minimal-doubling ChPT.
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